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Abstract

In flat COMA architectures, an attraction-memory miss
must first interrogate a directory before a copy of the
requested data can be located which often involves three
network traversals. By keeping track of the identity of a
poteniial holder of the copy—called a hint—one network
traversal can be saved which reduces the read penalty.

We have evaluated the reduction of the read miss pen-
alty provided by hints using detailed architectural simula-
tions and four benchmark applications. The results show
that a previously proposed protocol using hints actually
can make the read miss penalty larger because when the
hint is not correct, an extra network traversal is needed.
This has motivated us to study a new protocol using hints
that simultaneously sends a request to the potential holder
and to the directory. This protocol reduces the read miss
penalty for all applications but the protocol complexity
does not seem to justify the performance improvement.

1. Introduction

Cache-coherent NUMA (CC-NUMA) and cache-only
memory architectures (COMA) are two emerging styles of
building scalable shared-memory architectures. Examples
of the former type include the Stanford DASH [14] and the
MIT Alewife [1] whereas the Swedish Institute of Com-
puter Science's Data Diffusion Machine (DDM) [13] and
Kendall Square Research’s KSR1 [4] are examples of the
latter type. Both styles use processing nodes that consist of
processors, caches, and a portion of the distributed main
memory. In contrast to CC-NUMA machines, main mem-
ory in COMA is converted into huge caches called attrac-
tion memories, that support replication of data not only
across caches, but also across memories.

The main advantage of COMA as compared to CC-
NUMA machines is that a vast majority of replacement
cache-misses can be handled in the local attraction mem-
ory [17]. However, to handle cache misses that cannot be
carried out locally, a mechanism is needed that locates the
node in which a copy of the memory block resides. DDM
and KSR1—examples of hierarchical COMAs—use a
hierarchical directory structure. Therefore, the latency of
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locating a copy can include several directory lookups. This
is in contrast to in CC-NUMA machines where a single
directory lookup locates a copy.

COMA machines can also locate copies using a single
directory lookup as in CC-NUMA machines which is the
basic idea behind the flat COMA (COMA-F) proposal by
Stenstrém et al. [17]. When a cache miss cannot be ser-
viced by the local attraction memory, the miss request is
sent to a directory which then forwards the request to an
attraction memory that keeps a copy of the block. This
attraction memory then returns the copy to the requesting
node. While the whole transaction often includes three
network traversals, two network traversals would suffice,
did the requesting node know where to retrieve a copy.

To be able to send the read-miss request directly to a
holder of the block, one can associate an identifier of the
potential block holder—called a hint—with each attrac-
tion-memory block-frame. This concept was incorporated
in a COMA-F protocol by Gupta ez al. in [12]. If the hint is
correct, the copy is retrieved in two network traversals but
if the hint turns out to be wrong, the directory has to be
interrogated. Since this costs the latency of an extra net-
work traversal, the hints must be correct in at least fifty
percent of the cases to reduce the read miss penalty.

We evaluate in this paper the performance improve-
ment using hints on a simulated flat COMA machine and
four benchmark applications. While we evaluate the proto-
col using hints according to [12], we find that the savings
can be offset by the extra network traversals associated
with unsuccessful hints. This motivates us to study a new
protocol using hints that simultaneously sends a request to
the potential holder as well as to the directory; clearly,
unsuccessful hints do not introduce extra miss latency in
this protocol. Although we find that this protocol cuts the
read-miss penalty—in some casc by 14%-—the improve-
ment is limited by the small fraction of misses that can use
hints and the low success rate of hints.

In the next section, we review the latency associated
with read misses in protocols for CC-NUMA and COMA
machines and Section 3 presents a new COMA protocol
that uses hints to reduce the read-miss penalty. We present
our architectural simulation results in Sections 4 and 5
before we conclude in Section 6.
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2. CC-NUMA and Flat COMA Protocols

Penalties for memory operations, i.e., the number of cycles
a processor is stalled waiting for a memory operation to
complete, are important to combat in shared-memory mul-
tiprocessors. While the penalty in servicing write opera-
tions can be eliminated by exploiting relaxed memory
consistency models [8], as we assume in this paper, penal-
ties associated with read misses—read miss penalties—are
much harder to attack.

Many techniques have been proposed to reduce read
miss penalties including prefetching {15 ,5,6] and update-
based cache-coherence protocols [10,7). In this paper, we
focus on penalty reduction and cost of COMA protocol
optimizations as compared to CC-NUMA protocols. The
framework for our comparison is the coherence protocol in
DASH [14] and in the flat COMA protocol proposed by
Gupta et al. [12]. The review of these protocols, that
appear in Sections 2.1 and 2.2 and that we simulate in Scc-
tion 5, provides an intuition as to how hints can make a flat
COMA protocol performing better. We then review the
criginal flat COMA protocol with hints in Section 2.3.

The general structure of the CC-NUMA and COMA
machines we consider in this paper appears in Figure 1. It
consists of a number of processing nodes that each con-
tains a processor, a private cache, and a portion of the
main memory. The processing nodes are connected by a
general interconnection network for which the only
requirement is that a request sent from one node to another
always uses the same path (i.e. FIFO order is preserved).

2.1 A CC-NUMA Protocol

Data and code pages are initially mapped to the various
memory modules in a CC-NUMA machine. The node in
which a specific page is mapped is called the home node of
that page and the memory blocks it contains.

Replication of memory blocks is only supported across
the private caches and consistency among cached memory
blocks is maintained by a system-level write-invalidate
protocol. The basic mechanism consists of a directory
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Figure 1: General structure of the CC-NUMA
and COMA architectures.
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Figure 2: A global read request when the block is (a)
SHARED or UNCACHED (b) MODIFED.

entry associated with each memory block that keeps track
of which caches have copies using a presence-flag vector.
Moreover, the directory entry also encodes the state of the
memory copy which can be UNCACHED, SHARED, or
MODIFIED. Similarly, each cache copy can be in one of
three states: INVALID, SHARED, or DIRTY.

Let us now recapitulate the cache read-miss transac-
tions in the DASH protocol. (For more details, the reader
is referrcd to [14].) To simplify the discussion, we refer to
the node in which the cache miss originates as the local
node; a node other than the local node and the home node
that is involved in the cache-miss transaction is referred to
as a remote node.

If Local (L) is not the same as Home (H), a cache miss
results in a global read-miss request (GRd) to Home. If the
memory copy is SHARED or UNCACHED, a copy is
returned to Local. This read-miss transaction includes two
network traversals (or hops) and is shown in Figure 2a. If
the memory block is MODIFIED, however, the copy must
be retrieved from Remote (R) which keeps the only copy
in state DIRTY. This is done by sending an update request
to Remote (Update in Figure 2b). When Remote receives
the request, it sends a fresh copy to Home (UMem) as well
as to Local (Data). When Home receives the copy, the
state of the memory block is changed to SHARED. We
note that when Local, Home, and Remote are different
nodes, a read-miss transaction includes three hops whereas
if Home is either the same as Local or Remote, it requires
less than three hops.

Whether a read miss is serviced in zero, two, or three
hops in CC-NUMA depends on (i) the location of Home
with respect to Local and (ii) the state of the memory copy.
First, if Local is the same as Home and if the memory
copy is clean, i.e., in statc UNCACHED or SHARED,
the read miss can be serviced locally; if the memory block
is in state MODIFIED, the read miss is serviced in two
hops. Second, if Local is not the same as Home but the
memory copy is clean, the read miss is serviced in two
hops, whereas if the memory copy is in state MODIFIED,
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three hops are needed. We note that if a page is mapped o
Local, then all Local’s misses to that page are serviced in
at most two hops. Especially in the absence of invalida-
tions, all misses are serviced locally.

The way CC-NUMA machines reduce the number of
hops per cache read miss is by a careful mapping of pages
to nodes. This mapping strives at increasing the likelihood
of finding the home node in the local node. Unfortunately,
the absence of support for page replication limits this
approach. This is why COMA machines have a potential
to reduce the number of hops per cache read miss by using
hardware support for replication at the main-memory
level.

2.2 A Flat COMA Protocol

To support replication of memory blocks at the main-
memory level, COMA machines convert each memory
module into a huge cache by associating tag and statc bits
with each memory block-frame. Coherence across these
main-memory caches, referred to as attraction memories
(AM), is maintained by a system-level write-invalidate
protocol.

Owing to the replication of memory blocks at the main-
memor?/ level, a vast majority of the cache replacement
misses’ can be handled by the local AM [17]. On the other
hand, cold misses to memory blocks belonging to pages
mapped to other nodes and coherence misses must be han-
dled remotely. Since memory blocks can migrate across
memories, a mechanism is needed to locate an AM that
has a copy for remotely serviced misses. The Data Diffu-
sion Machine[13] and the Kendall Square Research’s
KSR1[4] employ a hierarchical directory mechanism that
may introduce several directory lookups before the copy is
located. This is in contrast to in CC-NUMA machines
where a single directory lookup (in Home) is needed to
locate the copy. In [17), it was shown that the laiency
caused by the hierarchical mechanism can offset the gains
of the low replacement-miss latency even if pages are ran-
domly distributed in a CC-NUMA machine.

The flat COMA (COMA-F) as proposed by Stenstrom
et al. in [17] uses a similar notion of a home node for each
memory page as in CC-NUMA. Unlike CC-NUMA, how-
ever, a memory copy is not necessarily allocated in
Home’s AM even if it is clean. Instead, another dynami-
cally assigned node—the master of the memory block—is
responsible for a “master copy” of the block and will ser-
vice all AM read-miss requests. Each directory entry con-
sists of a pointer to the current master and a presence-{lag
vector 10 keep track of memory copies. We next study the

1. Misses that result from size or associativity constraints in the
private caches in the absence of invalidations.
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Figure 3: Flow of a global read-miss transaction in
a flat COMA protocol.

protocol for inter-node AM read misses in the protocol
proposed in [12]. Like in Section 2.1, we refer to the
requesting node as Local and the node that keeps the direc-
tory as Home. In addition, we refer to the node that keeps
the master copy as the Master and any other node involved
in an inter-node read-miss transaction as Remote.

Each directory entry can be in two stable states,
EXCLUSIVE and SHARED, that indicate that there is
exactly one or more than one memory copy in the system,
respectively. Moreover, the directory state can be also in a
transient state, WAIT_INVALIDATE, indicating that an
ownership transaction is in progress.

A cache read-miss that cannot be serviced in the local
AM results in a global read-miss request (GRd) which is
sent to Home as shown in Figure 3. Home then forwards
the request to Master (Forward) that returns a copy to
Local (Data). Local fills the AM as well as the private
cache with the block. Home will not change the directory
state (if ever) until it receives the transfer request from
Master (Sharing in Figure 3).

Ownership transactions are handled according to Fig-
ure 4. When Home receives an ownership request (GWr),
it forwards it to the Master (WForward) and the state of
the directory entry becomes WAIT_INVALIDATE. From
now on, all incoming read miss as well as ownership
requests will be rejected and have to be retried. When
Master receives the forward request, it returns a copy of
the block to Local (WData) and notifies Home (Transfer).
When Home receives this message, the state becomes
EXCLUSIVE and Local is decmed the new master. In
parallel, Home issues invalidations to all sharers (called
Remote in Figure 4) and sends a message to Local
(WrAck). Local will receive all invalidation acknowledg-
ments (/Ack) as in the DASH protocol {14].

While the transient state WAIT_INVALIDATE pre-
vents a race condition if a global read-miss or another
ownership request arrives at Home during an ownership
transaction, other race conditions can occur. Assume that
an ownership request arrives at Home during a global
rcad-miss transaction when Home has sent Forward to
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Figure 4: Flow of an ownership transaction in a flat
COMA protocol.

Master (see Figure 3). Since the network preserves FIFO
order between any two nodes, Home will receive the
Transfer message in the ownership transaction after it has
received the Sharing message from Master which guaran-
tees that the directory information cannot be obsolcte.
Another race can occur when Home subsequently issues
invalidations to all sharers. It can so happen that Local
receives an invalidation before Data in Figure 3 has
arrived. This could result in a block fill of inconsistent
data. This problem is solved as in the DASH by retrying
the read-miss transaction, once the Data message arrives.

Handling replacements of AM blocks is a challenge to
COMA protocols not apparent in CC-NUMA protocols.
While AM copies that are not master copies can be simply
discarded, a new master has to be nominated if the master
copy has to leave room for another copy. Strategics for
doing this is beyond the scope of the paper. (The interested
reader is referred to {17].)

In summary, while a flat COMA is expected to have
fewer global read misses than CC-NUMA machines, glo-
bal read-miss transactions often involve three hops when
CC-NUMA machines involve two hops. This is because
Home does not keep any memory copy in general; rather
the current master has to provide it. In the next section we
will study how COMA protocols can use the notion of a
hint to avoid the detour of read-miss requests via Home.

2.3 Hints: Avoiding Three-Hop Misses

To be able to service a global AM read-miss transaction in
two hops, Local could associate with each AM block-
frame an identifier—called a hint in [12]—of a potcntial
master. If the hint is correct, a copy of the memory block
can be retrieved in two hops. While the success rate of a
hint depends on the heuristics used to guess who the cur-
rent master is, we postpone the discussion of the useful-
ness of various hint heuristics to Section 3.2.

Let us review how the basic global read-miss transac-
tion in Figure 3 can be changed to support hints. In Figure
5, we show the read-miss transaction flow when (a) the
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Figure 5: Flow of a global read-miss transaction using
hints. (a) Successful hint (b) Unsuccessful hint.

(b)

hint is successful and (b) when the hint is wrong. Unlike
the flat COMA protocol with no hints, the read request is
sent to the potential master (Guess). If the hint is correct,
Master supplics Data and sends a sharing request (Shar-
ing) to Home. Home updates the state of the directory
entry as in the protocol with no hints. If the hint is wrong,
however, the remote node that is no longer Master (R in
Figure 5) forwards the read request to Home (Failure).
Home then forwards the read request to the current Master
as in the original protocol.

One could use the notion of hints for ownership
requests as well. Although such transactions are sketched
in [12], we have not incorporated them in our simulated
protocols. Instead, the ownership requests are handled
according to the transaction flow of Figure 4.

While successful hints can reduce the number of hops
in global read-miss transactions by one, unsuccessful hints
add another hop to the latency; at least half the guesses
must be successful to reduce the overall read miss penalty.
We study in the next section a new protocol extension that
does not add an extra network hop when the hint is wrong.

3. A New Flat COMA Protocol using Hints

Instcad of forwarding the read-miss request to Home,
when the hint is wrong, Local could simultaneously send
the read-miss request to both Home and the potential mas-
ter. If the hint is correct, Home could drop the read-miss
request. Conversely, if the hint is wrong, the incorrectly
inferred master could discard it. This is the general idea of
the new flat COMA hint protocol extension. We present in
Section 3.1 how the global read-miss transaction has to be
changed for the new protocol. Then in Section 3.2 we dis-
cuss previously proposed hint heuristics as well as propos-
ing a new one.

3.1 Protocol Transactions

In Figure 6a, the flow of a global read-miss transaction in
the case of a successful hint is shown. A global read-miss
request (GRd) is sent from Local to Home. This request
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Figure 6: Flow of a read-miss transaction for the new
protocol. (a) Successful hint (b) Unsuccessful hint.

carries the identity of the hint. Simultaneously, a Guess
message is sent to a potential master (G in Figure 6a). If G
has a copy of the block, it will respond with Data to Local
and Home is notified by the Success message so that it
updates the directory state. Since the identity of the
guessed master is contained in the GRd message sent to
Home, Home can drop the message if G has a copy. The
flow of an unsuccessful global read-miss transaction is
shown in Figure 6b. If Home notices that G does not have
a copy according to the directory entry, it will forward the
read request (RForward) to the current Master which
responds to the read request in the same manner as in the
COMA protocols in Section 2. Therefore, an unsuccessful
hint can be serviced in three hops, instead of four using the
protocol in Section 2.3. Moreover, this protocol only
requires that G has a copy; and not a master copy.

A complication arises if G sends a request to Home to
give up its AM copy (replacement) and Home receives a
global read-miss request before the replacement request
from G has arrived at Home. Home would then conclude
that the read-miss request is serviced by G and would drop
the request. To solve this race condition, G sends a Failure
message to Home if it has no copy. Home then services
this request in the same way as a failure request in the
original hint protocol in Section 2.3.

3.2 Hint Heuristics

Two hint heuristics, called shared hints and invalid hints,
where proposed in [12]. Invalid hints consider the node
that most recently invalidated the block as the Master,
whereas shared hints consider the node that most recently
provided a copy as the Master. To support hints, we note
that the identity of the node that invalidated or supplied
the block must be available in the invalidation requests or
in the data replies. Moreover, shared hints associate with
each AM block a log, N pointer, given N nodes; invalid
hints can use the empty block frame because the block is
invalid.

Invalid hints work well for applications in which data is
supplied on a read miss from the same node that invali-

dated the copy prior to the miss. This situation shows up in
applications with producer-consumer data where the pro-
ducer will both invalidate the data and subsequently pro-
vide it to a consumer. By contrast, in applications with
migratory data [11], a block will be typically invalidated
by one node and subsequently supplied by another. Gupta
et al. [12] studied the success rate of read misses using
invalid hints and found that it is less than 50% for applica-
tions where migratory data dominate; for applications with
producer-consumer data, the success rate was high.

Shared hints in the terminology used by Gupta et al.
[12] consider the latest node that provided the copy as the
one that is the current Master. Gupta er al. [12] used
shared hints to optimize ownership transactions only, but
did not consider it for optimizations of read-miss transac-
tions which is in contrast to what we do in this study. To
do this, we let the latest node that provided the copy act as
the next one to provide it. While this heuristic is expected
to work well for producer-consumer data, as do invalid
hints, it is also expected to work well for migratory data
when a block always migrates among nodes in the same
order.

We note that the new protocol presented in this section
is expected to perform better than the one in Section 2.3
because it does not introduce extra network hops when the
hint is wrong. However, a successful hint requires an extra
message—in essence the GRd message in Figure 6a. This
will result in a higher traffic than the original hint protocol
in Section 2.3 which as a secondary effect can increase the
read miss penalty. Note, however, that the new protocol
does not involve more messages in read-miss transactions
as compared to the COMA protocol with no hints.

The usefulness of hints is dictated by (i) the fraction of
misses that can use hints and (ii) the success rate of the
hints. Whereas coherence misses can often use hints, we
note that cold misses in general can not be optimized
because the hint heuristics discussed require that the block
has been in the AM before.

4. Simulation Methodology

In order to study the performance improvement obtained
by the COMA protocols in the previous sections, we have
developed detailed architectural simulation models using
the CacheMire Test Bench [3]; a program-driven simula-
tion platform for shared-memory multiprocessors. A simu-
lator consists of two parts: (i) a functional model of
multiple SPARC processors driven by a parallel program
and (ii) a memory-system simulator. The processors in the
functional simulator are delayed according to the timing
characteristics of the memory-system simulator. Thus, an
interleaving of global memory references that conforms
with the target system is maintained.
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Figure 7: Simulated processing node organization.

The detailed organization of the CC-NUMA and the
COMA processing node models appears in Figure 7. It
consists of a SPARC processor connected to a 2 Kbyte,
write-through, and direct-mapped first-level cache (FLC in
Figure 7). The write buffer of the FL.C (denoted FLWB) is
connected o a direct-mapped second-level cache (SLC).
To focus on the relative performance of our CC-NUMA
and COMA models, we vary the size of the SLC in the
simulations. In the CC-NUMA model, the SLC is lockup-
free and copy-back and connected through its request
buffer directly to the local bus. The SLC is filled from
either the local memory module or from a memory module
in another node. By contrast, in the COMA models, the
SLC is write-through and interfaces directly to an infi-
nitely sized attraction memory (AM) which in turn is con-
nected to the local bus through its request buffer
(AMWRB). The particular location of the AM is motivated
by the fact that it has to be interrogated on each SLC miss.
The block size in the FLC, in the SLC, as well as in the
AM is 16 bytes. The FLWB contains eight entrics and the
SLWB and the AMWB both contain 16 entries. In all
models, a memory module stores a presence-flag vector
for each memory block; in CC-NUMA, the data block for
each memory block is also contained in this module.

Regarding the timing parameters, the processors are
clocked at 100 MHz (1 pclock = 10 ns). We handle all
instruction and private data references as if they hit in the
FLC. These refercnces and all shared data references that
hit in the FLC take 10 ns to service and do not stall the
processor. The SLC access time is 30 ns and an access that
misses in the FLC but hits in the SLC takes 6 pclocks
(including 3 pclocks to fill the FLC). The AMs in the
COMA models and the fully-interleaved memory modules
in the CC-NUMA model have an access time of 90 ns. The
time for an FLC block fill from the AM is 18 pclocks
whereas an FLC block fill from the memory module takes
30 pclocks. The difference stems from that the latter also
includes two local bus accesses that each takes 60 ns.

We simulate systems of 16 processing nodes intercon-
nected by a single 4-by-4 wormhole routed synchronous
mesh? that is clocked at 100 MHz and with a flit size of 64

Local bus

bits. A request requires two flits whereas a reply (contain-
ing data) requires six flits. It takes on average 12 pclocks
and 16 pclocks to transfer a request and a reply from one
node to another, respectively, in a conflict free system. We
simulate contention in all parts of the machine though.

The latency involved in a global read-miss transaction
depends on the initial mapping of pages among nodes. The
allocation we assume maps the 4 Kbyte pages to the nodes
in a round-robin fashion; consecutive virtual pages end up
in nodes with consecutive node numbers. On the other
hand, the latency encountered by ownership transactions
are completely hidden because we assume release consis-
tency [9] and an aggressive lockup-free second-level
cache design. Finally, synchronizations use queue-based
locks and we allocate a single lock per memory block to
avoid false sharing.

To evaluate the performance of the implemented proto-
cols, four benchmark programs summarized in Table 1 are
used. The programs are written in C, compiled with gcc
(version 2.1) with optimization level -O2, using ANL
macros [2] to express parallelism. Three of the applica-
tions (MP3D, Water, and Cholesky) are part of the
SPLASH suite [16) and the fourth application—the multi-
grid version of Ocean—has been provided to us from
Stanford University. MP3D uses 10K particles for 10 time
steps. Cholesky was run using the bcsstk14 benchmark
matrix. Water uses 288 molecules for 4 time steps, and
Ocean works on a 128x128 grid with tolerance 107, All
statistics are gathered in the parallel sections.

Table 1: Benchmark programs.

Benchmark Description

MP3D 3-D particle-based wind-tunnel simulator
Water Water molecular dynamics simulation
Cholesky Cholesky factorization of a sparse matrix
Ocean Ocean basin simulator

5. Experimental Results

We first study the relative performance of the various pro-
tocols by looking at the effects on the execution time in
Section 5.1. Then in Section 5.2 we focus on the efficiency
with which the protocol extensions using hints reduce the
average number of network hops for read-miss transac-
tions. Finally in Section 5.3 we study to what extent the
COMA protocols with hints affcct the network traffic.

2. While a separate request and reply mesh is a customary solu-
tion to avoid deadlock [14], we simplify our models by using
infinite network buffers in each network switch.
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5.1 Effects on the Execution Time

The experimental evaluation considers five systems. We
first compare the performance of the CC-NUMA protocol
according to Section 2.1 (denoted NUM) with the flat
COMA protocol according to Section 2.2 with no hints
(denoted COM). The execution times for the four applica-
tions on top of these systems appear in Figure 8 normal-
ized to the execution time of COM. For each application,
we consider three SLC cache sizes: 4, 16, and 64 Kbytes.
To see the fraction of the execution time that stems from
handling cache misses and synchronizations, we have
decomposed each execution-time bar into three sections:
The bottommost section is the busy time, the middle sec-
tion is the read-miss penalty, and the topmost section is the
time spent waiting for a lock to be granted. (The time wait-
ing for writes to perform is eliminated because we assume
release consistency [9].)

Comparing CC-NUMA with COMA with no hints with
4 Kbyte caches first, we see that the execution time for
CC-NUMA is between 13% (MP3D) and 100% (Occan)
longer than COMA which stems from the relative number
of cold, coherence, and replacement misses in the applica-
tions. Whereas all replacement misses can be handled
locally in the COMA model (we assume infinite AMs),
most replacement misses result in global read-miss trans-
actions in CC-NUMA.. In Table 2, the miss rates for each
application decomposed into cold, coherence and replace-
ment misses are shown. In Ocean and Cholesky, the
replacement miss component dominates the total miss rate
which explains why COMA performs significantly better
than CC-NUMA for these applications. By contrast, the
difference in performance between CC-NUMA and
COMA is smaller for MP3D where coherence misses
dominate. As we consider larger SLCs, the differcnce
between CC-NUMA and COMA vanishes as we can see in
Figure 8 for the 64 Kbyte SLC systems. These results are
consistent with {17].

Table 2: Cold, coherence, and replacement miss rate
components for 4, 16, and 64 Kbyte SLCs.

Cold Coh. Repl. Repl. Repl.
Appl. miss miss | m.rate | m.rate | m.rate

rate rate (4Kb) | (16 Kb) | (64 Kb)
MP3D | 1.6% 8.9% 6.7% 6.5% 1.8%
Water | 0.01% | 0.2% 0.8% 0.3% 0.1%
Chol. | 0.8% 0.2% 4.5% 0.8% 0.2%
Ocean | 0.03% | 0.6% 11% 5.8% 1.9%
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Figure 8: Execution times relative to Flat COMA with
no hints for all simulated systems at various SLC cache
sizes (4, 16, and 64 Kbytes).
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We next consider the three COMA protocols using
hints. ORI refers to the original COMA protocol that
involves an extra network hop if the hint turns out to be
wrong in Section 2.3 and that uses the shared hint heuristic
according to Section 3.2. We do not consider the invalid
hint heuristic for this protocol because of the low success
rate and because of the devastating effect wrong hints have
on the performance of this protocol. We also simulate the
new COMA protocol in Section 3 using invalid hints
(INV) and shared hints (SHA).

Starting with the original protocol using hints (ORI)
and for systems with 64 Kbyte second-level caches, we
see in Figure 8 that it does better than the COMA protocol
with no hints (COM) only for Ocean, where the execution
time is 6% shorter. Ocean contains producer-consumer
data as a result of nearest neighbor communication in the
multigrid solver. Therefore, shared hints have a high suc-
cess rate. For the other applications, ORI exhibits mixed
results; while the execution time for Water is virtually
unaffected, ORI does worse than COM for MP3D and
Cholesky. The fact that the execution time is between 2
and 5% longer for thesc applications as comparcd to
COMA with no hints suggests that the success rate is less
than 50%. Migratory data dominates in MP3D and
Cholesky. The fact that ORI shows poor performancc indi-
cates that data does not migrate among nodes in the same
order which would be beneficial for shared hints.

Continuing with the new protocols using shared (SHA)
and invalid (INV) hints, we see that they perform some-
what better than the COMA protocol with no hints in some
cases, but never worse. This is due to the fact that they do
not introduce extra latency for unsuccessful hints. Both
hint heuristics do best for Ocean because of its producer-
consumer data dominance, although SHA does best
Although it is difficult to make out from Figure 8, SHA
manages to cut the read-miss penalty in COMA with no
hints by 14%. The reason why SHA is better than INV is
that SHA also can shortcut misses to migratory data when
the latest supplier of the data block on a miss is the same
as the current one. This happens in Ocean for the barrier
counter that is read and written by all processors in turn.
Due to the deterministic order of how locks are granted by
the queue-based lock mechanism, barrier counters tend o
migrate among nodes in the same order, giving SHA an
advantage over INV. This also explains why we scc a
shorter synchronization stall time for SHA than INV in
Ocean.

Overall, although the new protocol with shared hints
performs better than the original protocol with shared hints
for all applications, the performance improvement over
COMA without hints is significant for Ocean only. In the
next two sections, we will analyze in detail the reasons for
the modest improvements of hints.
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Figure 9: Distribution of 2, 3, and 4 hop read-miss
transactions in the protcols using hints.

5.2 Effects on the Number of Network Hops

To analyze how successfully the new protocols using hints
reduce the number of network hops, we counted the aver-
age number of hops nceded to carry out each read-miss
transaction using hints.

Depending on the location of Local, Home, Master, and
Remote with respect to each other, read-miss transactions
could be serviced in two network hops with the original
COMA protocol with no hints. To separate out the cffects
of how successfully hints can cut the number of nctwork
hops, we charge a network hop for all requests in a read-
miss transaction even if the source and the destination is
the same node. For exampie, if Local and Home refer to
the same node, we charge a network hop for the global
rcad-miss request (GRd) in Figure 3. Therefore, the aver-
age number of hops for coherence misses in the original
COMA protocol with no hints is three.

In Figure 9, we show the average number of network
hops needed for misses using hints on top of each bar for
the three COMA protocols. Considering the original pro-
tocol using hints (ORI) first, we note that it requires 3.53,
3.15, and 3.68 hops for MP3D, Water, and Cholesky,
respectively; more hops are needed than in the protocol
without hints. To understand why this is the case, we also
show in Figure 9 the fraction of misses using hints that
require two, three, and four hops. While we also record the
miss transactions that have to be retried due to other pend-
ing coherence actions on a block, such transactions con-
tribute marginally to the statistics. From the distribution,
we clearly see that a majority of the misses in ORI need
four hops. These four-hop miss transactions stem from
unsuccessful hints. Because of the apparent low successful
rate of hints, ORI does worse than the COMA protocol
with no hints for MP3D and Cholesky. The read-miss pen-
alty in Water is a small fraction of the overall execution
time; hence unsuccessful hints have a marginal effect.

Looking at the new protocols using hints (SHA and
INV), we see that the average number of hops is lower
than three for all applications. Specifically, virtually all
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four-hop misses have been wiped out because a miss
request exploiting hints is sent to the potential master as
well as to Home in these protocols, simultaneously. Unfor-
tunately, because of the low success rate of hints, most
misses still need three hops in all applications except
Ocean which is why we see modest improvements in the
execution times. Another important observation is that
shared hints do consistently better than invalid hints for all
applications; the fraction of two-hop misses is higher in
ORI and SHA than in INV.

5.3 Effects on Network Traffic

One negative effect of the new hint protocols as compared
to the original hint protocol is the extra message needed
for each read-miss transaction. These messages increase
traffic and could increase the contention which as a sec-
ondary effect could affect the read-miss penalty. To study
whether this is a significant effect, we first measured the
average bandwidth needed, measured in Mbytes per sec-
ond, for each application which we show in Figure 10 for
the COMA protocol with no hints. We see that MP3D
requires more than twice the bandwidth of the other appli-
cations. It appears that MP3D and Cholesky are the only
applications where the network could saturate.

In Figure 11 we show the total network traffic for each
application and for the different protocols with hints, nor-
malized to the traffic of the COMA with no hints assuming
4 Kbyte SLCs. Whereas the original protocol using hints
requires (ORI) at most 6% more traffic than the protocol
with no hints, the new protocols using hints do not require
significantly more traffic. The only case where the traffic
gets significantly higher is for the Water application under
the INV protocol. Fortunately, Water needs considerably
less bandwidth than the other applications as we sce in
Figure 10 so the extra traffic is not an important issue.

Comparing the traffic of ORI and SHA, we see that the
difference is typically less than 10%, indicating that the
traffic increase due to extra messages sent in SHA proto-
cols is negligible compared to the traffic caused by other
coherence messages. Finally, if we compare the traffic
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Figure 10: Bandwidth need for the COMA protocol
with no hints.
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Figure 11: Network traffic relative to the COMA
protocol with no hints (100%).

caused by INV and SHA, we see that SHA does better
thanks to its higher success rate for hints.

6. Concluding Remarks

Flat COMA protocols manage to remove global read-miss
transactions for replacement cache misses because of the
attraction memories which act as huge main-memory
caches. Unfortunately, other miss types such as coherence
misses may involve as many as three network traversals
because the directory must be interrogated before a copy
can be located.

In this paper, we have studicd how COMA protocols
can use hints to find the node that keeps a copy without
interrogating the directory. This can cut the number of net-
work traversals by one. The first contribution is a new pro-
tocol for using hints that does not introduce extra network
traversals if the hint is wrong. Sccondly, we propose a new
hint heuristic that considers the last node that provided the
copy as the one that is going to provide a copy when the
next attraction-memory read miss is encountered.

We evaluate these new protocols and compare their per-
formances with previously proposed COMA protocols
using detailed architectural simulations and four applica-
tions. Our new protocol with the enhanced hint heuristic
performs better than previous COMA protocols, and the
read-miss penalty is improved by 14% for one out of the
four applications. For the other three applications, how-
ever, the improvement is marginal. The reasons for this are
the low fraction of read misses that can usc hints and the
low success rate of the hint heuristic. While the hint heu-
ristics seem successful for producer-consumer data, they
perform poorly under migratory sharing which seems
especially hard to deal with. In addition, since a protocol
that exploits hints is more tricky and because 1t also needs
some extra state in terms of storage for the identity of a
potential holder of a copy, we feel that the improvement in
performance that hints can provide does not justify the
cost.
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