
High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

Photon Splatting Using a View-Sample Cluster Hierarchy

P. Moreau1, E. Sintorn2, V. Kämpe2, U. Assarsson2 and M. Doggett1

1Lund University, Sweden
2Chalmers University of Technology, Sweden

Figure 1: Views from Sponza, Sibenik, and San Miguel, rendered using our method with 200k photons and radius set up to produce a smooth
image. The time taken to splat the photons is (left to right): 14 ms, 16 ms and 17 ms; full frame time is: 35 ms, 33 ms and 48 ms. The scenes
were rendered at 1080p on an NVIDIA Titan X.

Abstract
Splatting photons onto primary view samples, rather than gathering from a photon acceleration structure, can be a more
efficient approach to evaluating the photon-density estimate in interactive applications, where the number of photons is often low
compared to the number of view samples. Most photon splatting approaches struggle with large photon radii or high resolutions
due to overdraw and insufficient culling. In this paper, we show how dynamic real-time diffuse interreflection can be achieved
by using a full 3D acceleration structure built over the view samples and then splatting photons onto the view samples by
traversing this data structure. Full dynamic lighting and scenes are possible by tracing and splatting photons, and rebuilding
the acceleration structure every frame. We show that the number of view-sample/photon tests can be significantly reduced and
suggest further culling techniques based on the normal cone of each node in the hierarchy. Finally, we present an approximate
variant of our algorithm where photon traversal is stopped at a fixed level of our hierarchy, and the incoming radiance is
accumulated per node and direction, rather than per view sample. This improves performance significantly with little visible
degradation of quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Global illumination algorithms attempt to simulate, in a physically
based manner, how light is transported through a virtual scene. The
goal is to estimate the radiance that is incident to each pixel of the im-
age, which will be an aggregate of all possible light-transport paths
that end up intersecting that pixel. Light-transport paths originate
from virtual light sources and will undergo any number of reflec-
tions (where energy may be splatted or absorbed). There are several
textbooks that discuss the common theory of global-illumination
algorithms and the many different algorithms that numerically solve
the underlying equations to produce photo-realistic images (see, e.g.,

[PH10, DBBS06]). These algorithms typically favour correctness
over computation speed and can take minutes to hours to compute
an image.

On the other end of the spectra are real-time, or interactive, global
illumination algorithms. Depending on the use case, these algo-
rithms have between one and a few hundred milliseconds to produce
a plausible image. There exist a very large number of such algo-
rithms, each with its own limitations and benefits. In this paper,
we will explore one class of algorithms, commonly referred to as
photon splatting, and suggest several novel improvements.

Photon splatting is a variant of the photon-mapping [Jen01] class

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

of algorithms. In the photon-splatting variant of algorithms, photons
are traced from the emitters and directly visualized, by accumulating
the contribution to an outgoing radiance of each photon against the
view samples (i.e. primary ray hit points) that it affects. Thus, a
photon is given some artificial region of influence, usually a sphere
or an ellipsoid, and the main difference between splatting algorithms
is how this geometric shape is intersected with all view samples.

We propose a novel approach to real-time photon splatting for
global illumination. For each frame, a 3D acceleration structure
is built over the current view samples. We use the view-sample
cluster hierarchy [SKOA14], which builds a hierarchy of clusters
of view samples based on screen tiles. We show that this technique
can be used to efficiently cull large clusters of view samples that
lie outside of a photon’s region of influence before considering
individual view samples. Additionally, we show that having the
view samples arranged in groups of clusters (that all lie close to
each other), improves performance by stopping traversal as soon as
a photon contains an entire node.

Another benefit is that under the assumption that nearby view
samples are likely to have similar normals, we can utilize optimiza-
tions that cull photons intersecting a node, but originating from a
direction such that they will not affect any of the contained view
samples. If we accept the limitation that a photon affects all view
samples equally (i.e. the surfaces have a constant BRDF and no
distance-based smoothing kernel is used), we can also stop traversal
as soon as all view samples contained in a node have normals such
that they will be affected by the photon.

In all, these improvements result in an algorithm that can render
a large number of photons with sufficiently large radii to produce
smooth results at high frame rates. To further push performance
in the direction where it could be used as a global-illumination
solution for, e.g., video games, we propose a more approximate
solution. Instead of testing each photon against each individual view
sample, we accumulate directional flux for the hierarchy nodes.
In the fastest version of this algorithm, where a leaf node at most
contains 32× 32 view samples, we obtain very high frame rates
without significant loss in quality.

2. Related Work

There is a vast body of work concerned with interactive global
illumination, and we refer the reader to an excellent recent survey
[RDGK12] for a more complete introduction. In this section, we
will briefly discuss only the previous work that is most relevant to
our proposed method.

Traditional photon mapping, where a kd-tree is built over the
photons to accelerate the gathering of nearby photons, has been
accelerated on the GPU [ZHWG08, LSP∗12], but has not been
shown to be practical for real-time scenarios where the light source
moves. Instead, it is common to splat photons onto the view samples.
McGuire and Luebke [ML09] find the first bounce from the light
by rasterization and trace the remainder of the path on the CPU.
Photons are splatted by rendering spheres that enclose the photons’
influence regions. Mara et al. [MML13] explore a number of faster
approaches to splatting, which will be detailed in Section 3.2.

A large portion of recent work on interactive global illumina-
tion stems from the concept of Instant Radiosity [Kel97], which
is similar to photon splatting in that particles are traced from the
light source and stored at each bounce. Unlike photon splatting,
these particles are then treated as Virtual Point Lights and store
the outgoing radiosity (rather than incoming flux). The scene is
then lit from all such VPLs. Reflective Shadow Maps [DS05] is
a GPU based variant of this, in which the first bounce from the
light source is calculated using rasterization. For each view sample,
a stochastic subset of the generated VPLs is gathered for shad-
ing. Nichols and Wyman [NW09] suggest an alternative approach
where the VPLs are instead scattered onto a multi-resolution buffer.
These techniques do not consider visibility between VPL and view
sample. This is addressed in a method called Imperfect Shadow
Maps [RGK∗08, REH∗11], where highly approximative shadow
maps are calculated in real time for each VPL.

We are only aware of a few real-time global-illumination methods
that are production proven. One notable example is Voxel Cone Trac-
ing [CNS∗11] in which the scene is voxelized to a sparse voxel oc-
tree and a cone-marching algorithm gathers approximate incoming
radiance. Another is Cascaded Light Propagation Volumes [KD10],
where the light field is stored using spherical harmonics in a coarse
discretization of the view frustum. Mara et al. [MMNL14] present a
fast approximation to Global Illumination using deep G-Buffers, but
since the illumination is view frustrum based, it does not produce a
photon tracing of the scene every frame, leading to issues with off
screen illumination.

The view-sample cluster hierarchies that we use in this paper
were first suggested by Sintorn et al. [SKOA14], who use it to splat
per-triangle shadow volumes. That paper, in turn, was inspired by
the work of Olsson et al. [OBA12], who first suggested arranging
view samples in clusters to speed up shading with many bounded
light sources. In their work, the acceleration structure was built over
the light sources, instead of the clusters.

3. Background

In this section, we will give an overview of the previous work that
this paper directly builds upon.

3.1. Photon Mapping

Photon mapping, introduced by Jensen [Jen96], is a well established
technique for global illumination. Photons are traced from the light
source into the scene and are gathered from an acceleration structure
to perform a radiance estimate when raytracing from the camera in
a second pass. Usually, the photon map is not queried for the first
vertex of a camera path, but secondary reflection rays are traced and
where they hit, the photon map is used. This is called the final-gather
step. Photon mapping has been extended in a large number of ways,
and we refer the reader to [HJB∗12] for a thorough overview.

3.2. Photon Splatting

For real-time global illumination, a final-gather pass is usually too
costly, but tracing a number of photons through the scene to capture
some indirect-illumination effects can be achieved at real-time frame

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

rates. Direct lighting can be efficiently computed with the standard
rendering pipeline (with light visibility handled by, e.g., shadow
maps). By not storing photons at the first bounce from the light
source, the remaining photons can be used to directly estimate
indirect illumination.

Even so, the traditional photon-map density estimate is often too
costly. An alternative approach is to give each photon an a priori
region of influence (or radius) and to splat the photons onto the
view samples. This is often referred to as photon splatting [SB97]
and can be implemented on a GPU by rendering the photons as
geometric objects onto the current depth buffer, calculating the
photons’ influence on each affected view sample and accumulating
the results [LP03, ML09].

Figure 2: Photon Splatting. Left: when splatting photons using the
rasterizer, view samples that lie behind the photon (red region) will
not be culled. Right: A tiled renderer alleviates this, but tiles with
depth discontinuities will still cause sub-optimal culling.

Mara et al. [MML13] evaluate a number of photon-splatting
algorithms and find two algorithms to perform better than the rest.
We will briefly explain these next. The first is 2.5D Photon Volumes
that render 2D screen-aligned polygons [MM13] that represent the
photons onto all the view samples that the polygon covers. The
main problem with this method is that this can give rise to many
unnecessary photon/view sample tests (see Figure 2).

The second method is Tiled Photon Splatting. This method as-
sociates a photon with a tile based on the tile’s closest and furthest
depth, reducing incorrect photon associations but still resulting in
photons being incorrectly associated with tiles that have large depth
ranges (see Figure 2). Also, the tile division is typically rather coarse,
so that each tile will contain a long list of photons of which only a
few affect each individual view sample.

4. Algorithm

In this section, we will describe our new photon-splatting algorithm
in detail, beginning with the basic algorithm and then introducing
some optimizations that are made possible by arranging the view
samples in cluster hierarchies. Finally, we will discuss an approxi-
mate algorithm that is much faster, at the cost of a slight decrease in
quality.

The basic algorithm consists of six passes:

1. Render G-Buffer. Using the standard pipeline, render the view
sample positions, normals, and material properties to a G-Buffer
texture.

2. Generate Cluster Hierarchies. Using the view-sample posi-
tions from the previous step, generate the cluster hierarchy (see
Section 4.1).

3. Photon Tracing. A number of paths are traced from the light
source, and at each bounce (except the first), a photon is stored
to a list (see Section 4.2).

4. Photon Splatting to Clusters. Each photon is traversed through
the cluster hierarchy, and when a node is enclosed, or a leaf node
is found to be intersected, the photon ID is stored in a list unique
to that node. (see Section 4.3)

5. Radiance Estimate. For each view sample, the lists of photons
of the containing nodes are traversed and the contribution of each
photon is accumulated. (see Section 4.4)

6. Final Shading. Direct lighting is computed in a full-screen pass,
and the indirect lighting from the previous pass is added to obtain
the final pixel color.

4.1. Generate Cluster Hierarchies

Figure 3: Left: Each cluster (cell in the 3D grid) is marked as oc-
cupied if it contains view samples. Then, parent nodes are marked
as occupied recursively. Right: The bounding box of each cluster is
calculated and propagated upwards in the tree.

We build a hierarchical view space 3D acceleration structure
around the view samples using the technique presented by Sintorn
et al. [SKOA14] and extending it for Photon Splatting. This ad-
dresses the issues of tiled photon splatting by creating much tighter
bounds around view samples and allowing smaller groupings of
view samples.

The cluster hierarchy divides the view frustum into a 3D grid
with roughly cubical boxes. Each box is called a cluster and view
samples are attached to one cluster. The next level of the hierarchy
contains 32 clusters, a 32-bit word that indicates the occupancy of
the child clusters, and a 32-bit node key (see Figure 3). Bounding
boxes for each node are calculated and propagated up the tree.

4.2. Photon Tracing

This paper focuses on efficiently performing the radiance estimate,
and our photon tracing is a straightforward GPU implementation
using NVIDIA’s Optix [PBD∗10] framework. Our light sources are
diffuse emitters with an angular cut-off. At each bounce, a new
direction is chosen by importance sampling the BRDF (or the cosine
term, for diffuse surfaces), and the new flux is calculated as:

Φ
′ =

f (ω,ω′)
p(ω,ω′)

cos(n,ω′)Φ, (1)

where f is the BRDF, p is the Probability Density Function (PDF),
and Φ is the current flux of the photon. In order to maintain a roughly
similar flux among stored photons, we then terminate the path with
probability R = min(1,Φ′/Φ) and set Φ = (1/R)Φ′ if the photon

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

was not terminated. We keep tracing paths until we have reached
some predefined number of photons.

In previous work [ML09, MML13], it has been suggested that
the photon radius could be varied according to the path probability.
This is important to avoid overblurring caustics, but we are mostly
interested in scenarios where very few photons are stored to ob-
tain real-time global lighting effects (avoiding caustics) and can
generally keep the radius fixed.

4.3. Photon Splatting to Clusters

This step of the algorithm is actually broken into several passes to
improve overall performance. Ultimately, each photon is intersected
with the view-sample cluster hierarchy and inserted into a list at
every node that is completely inside the photon, or leaf node that is
intersected.

Since some photons will intersect many more nodes than others,
there can be load-balancing issues. As suggested in [SKOA14], we
therefore implement a pass that traverses down 3 levels and pushes
the current photon ID and node key to a global list. To ensure the
global list has good memory coherence, it is rearranged into local
groups that are used in the following insertion passes to find the leaf
intersections. When running the leaf intersection passes, a sufficient
number of threads are started to fully utilize the GPU and each
thread fetches jobs from the global list until it is empty.

At each cluster where photons intersect, an array is allocated to
store the intersection photons. We calculate the required array size
for each node in a first pass (traversing the hierarchy exactly as we
do when inserting photons), and store the result in an array. We then
use the prefix sum (calculated using cudpp [SHGO11]) of that array
as a per-node index where the node’s first photon shall be stored. An
alternative approach to using arrays would be per-node linked lists.
We have found, however, that while building these linked lists is not
very expensive, iterating through them in the radiance estimation
pass (Section 4.4) is very inefficient.

One thread per photon is launched on the GPU, and that thread
will recursively test the photon against the nodes’ bounding boxes.
The traversal is implemented in an iterative fashion with a small
stack in shared memory, which is initialized with the child mask
from the root node. The main traversal loop then starts by looking at
the top mask on the stack, and checking the first existing child node
for intersection. That child node is cleared from the child mask on
the stack, so as not to be tested again. When a photon is found to
completely enclose a node, or the traversal reaches an intersected
leaf node (cluster), the photon is appended to a list for that node and
its child-nodes are not traversed.

When traversing the cluster hierarchy to find the sphere intersec-
tion we maintain a stack of child masks, and the current node index
or node key. As each node is visited, the first bit of the 32-bit child
mask becomes the active node, and the bit is removed from the mask
and the remaining mask is pushed to the stack to track the remaining
child nodes that still have to be processed. At a new node, the node
key is used to fetch the child mask and bounding box of the current
node from the corresponding global lists. Instead of storing the node
key on the stack it can be stored in a single integer. When traversing

to the i:th child of a node, the node key is simply shifted five bits to
the left, and i is appended in the lower bits. When a node has been
fully processed and the stack is popped, the node key is shifted back
five bits to the right. For all but the final level, the node key is used
as the immediate index in the list of bounding boxes. At the final
level, to reduce the memory footprint, the node key is instead used
to find an index to where the corresponding bounding box is in a
compact list.

The algorithm differs from the method described by Sintorn et
al. [SKOA14]. First, in their algorithm, a warp (32 threads) is started
per primitive, and the intersection tests are done in parallel. We
found that, because only a few of the subnodes are likely to be
occupied, letting a single thread do all intersections for the occupied
nodes is more efficient, at least in our case where the intersection
tests are simple sphere/bounding box tests. Secondly, in their al-
gorithm the bounding boxes were defined in Normalized Device
Coordinates (NDC), and the hierarchy could be tested against each
per-triangle shadow volume by, starting from the root, seeing which
subnodes were occupied and testing the bounding boxes of each
against the shadow-volume planes (also in NDC). In our case, the
primitives to be tested are spheres, which are not simple geometric
shapes in NDC, so we instead store the bounding boxes in view-
space coordinates, which will be overly conservative at higher levels
of the hierarchy.

Note that we consider photons to have a spherical influence re-
gion, rather than a squashed sphere as has been proposed in previous
work [ML09]. Clipping the sphere by one or two planes is a sim-
ple modification to the algorithm but causes unwanted artifacts as
we want to avoid a smoothing kernel in our radiance estimate (as
explained below).

4.4. Radiance Estimation

When all photons have been traversed through the hierarchy, we have
a list of photons per node that must be considered for all contained
view samples. We start one thread per view sample and loop over
the photons in each containing node’s list. For each photon, we
check if the view sample is actually within and, if so, we accumulate
the reflected radiant intensity: I = I + f (ω,ωp)Φp (where f is the
BRDF, ω is the view direction, ωp is the incoming direction of
the photon and Φp is the flux carried by the photon). When all
photons have been processed, we calculate the outgoing radiance as
L = I/πr2, where r is the photon radius (or, if we have photons of
varying radii, the distance to the furthest photon).

When an insufficient number of photons are available in an area,
the distinct photon splats will become visible on the surface. It
is common practice to attempt to hide this by multiplying each
photon’s contribution with a distance-dependent smoothing kernel.
In the scenarios we are focusing on, with smoothly varying diffuse
inter-reflections, we found that it was more likely to reduce the
image quality.

4.5. Normal Cones

If the view samples in a node all have normals such that the photons
direction is not incident to any of their tangent planes, the node can
be rejected immediately.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

The view samples that fall into one cluster are guaranteed to lie
close to each other. Therefore, we make the assumption that they
are also likely to have similar normals, and upon that assumption
we attempt an optimization. When building the cluster hierarchy,
starting with the leaf level, we compute the average normal and
the maximum angle that a view sample’s normal deviates from this
average. We call this the normal cone of the cluster. We later refer
to this optimisation as cluster-cone. This normal cone is similar to
that used by Sederberg and Meyers [SM88] to bound Bézier normal
vectors. At the next level in the hierarchy, we generate the average
of all the subnode normal-cone directions and the maximum of the
subnodes’ deviation from that average plus the subnodes’ normal-
cone angle. In this way, we propagate the normal cone upwards in
the hierarchy (see Figure 4).

Figure 4: The normals of all view samples in a cluster are aggregated
into a normal cone. The normal cones of all clusters are aggregated
into normal cones for their parents.

With the normal cones in place, we can add a new simple rejection
test to the photon traversal. Whenever a photon is found to intersect
a node, we also check if the angle between the photon direction
and the normal-cone direction is greater than π/2+α, where α is
the normal-cone angle. If so, the photon will not affect any of the
contained view samples and does not need to be traversed further.

4.6. Trivially Accepting Photons

For diffuse surfaces, where the BRDF is constant, the contribution
of a photon to a view sample within a node is either zero (if the
photon is incoming from below the surface), or constant (for all
other directions). Thus, when a photon encloses a node, and we
know that all view samples within that node have normals on the
same hemisphere as the incoming direction, the contribution for all
view samples will be the same and we can accumulate this in the
node instead.

Thus, if the angle between the photon’s direction and the normal-
cone direction is less than π/2−α (i.e. the photon is incident on all
contained view samples’ tangent planes), we simply add the photons
flux to a per-node value. In the next pass, when estimating radiance,
we add this flux multiplied by the BRDF to the view sample’s
accumulated intensity. This can greatly increase the performance of
the radiance estimate pass, while the traversal performance remains
nearly the same. This optimisation is referenced as cluster-trivial.

4.7. Directional Approximation

A further performance optimization, later referenced as directional,
can be achieved by avoiding each view sample having to loop

through all intersecting photons and instead accummulating a di-
rectional flux per intersected node. For each node, we store the
incoming flux into a small number of buckets corresponding to
discrete directions. When a photon is found to enclose a node, or
intersect a leaf node, it adds its contribution to the bucket with the
closest associated direction. When estimating radiance, we no longer
have to process a list but simply evaluate the incoming flux from
each direction, for all nodes that contain the view sample.

Figure 5: Left: a 2D representation of flux being stored per octant
based on its incoming direction (yellow, green and blue arrows); the
stored flux is later weighted to account for certain directions being
below (greyed area) the view-sample’s tangent-plane (the red plane,
with its normal). Right: For each tile, there can be several clusters
at different depths (uniquely colored in the image), and our method
evaluates illumination per such cluster.

In our implementation, we store the flux incoming from each oc-
tant of the sphere (the number of directions used has a direct impact
on memory consumption, as shown in Section 5). When shading,
we only have the sum of the incoming flux from each octant. Parts
of, or all of, the octant might lie below the view sample’s tangent
plane, and photons from those directions should not contribute. To
remedy this overestimation of incoming flux, we could, for each
direction, clip the corresponding octant of the unit sphere against the
view sample’s tangent plane. The ratio of the area that is below the
tangent plane to the area that is above would give us a reasonable
weight for this direction (see Figure 5). This calculation would be
too expensive to perform for every view sample and direction, but
the weights depend only on the view-space normal, so we could
pre-compute it and store it in a small cubemap. In practice, however,
we have found that a much simpler heuristic gives acceptable re-
sults. The contribution from each direction is simply weighted with
2cos(n,d), where n is the view-space normal, and d is the direction
in view space. We multiply by 2 to account for that the integral of
the cosine is smaller (π) than the integral of the hemisphere (2π).

The proposed method only gives us an estimation of the incoming
flux per cluster. If we use that result to shade each view sample, the
result can be visibly blocky when the light-field changes quickly.
To alleviate this, for diffuse materials, we store only the irradiance
in a texture, and apply a depth- and normal-aware blur filter to that
texture. The blurred irradiance is then multiplied by the diffuse
BRDF in the final shading stage.

It is important to note that the proposed approximate method gives
much better results than simply rendering the indirect illumination
at a coarser resolution. E.g. a 32×32 tile can contain view samples
from several distinct surfaces at different depths which will fall into
different clusters. Our method will sample the irradiance for each of
these, whereas a simple upsampling would pick only the one in the
middle of the tile (see Figure 5).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

5. Results

All measurements have been made at a 1920x1080 resolution
on a NVIDIA Titan X GPU with 12 GB VRAM using Op-
tiX [PBD∗10] 3.9.0 for tracing the photons in real-time and
CUDA [NBGS08] 7.0 for every step of the algorithm, apart from
generating the G-buffers, and the shadowmaps, as well as the blur
pass, which are done using OpenGL. We limit the photon tracing
to four bounces and do not store photons on the first bounce but
instead use standard deferred shading to compute the direct lighting.

Three different scenes are used throughout this paper: Sponza,
Sibenik and San Miguel (see Figure 1). For each of them, we have
created a fly-through animation (see the accompanying videos).
These fly-throughs do not include moving lights or geometry, but
we have supplied additional videos showing dynamic scenes. The
total frame time, including the time taken to trace photons is given
in Figure 1. Updating the acceleration structures when an object
moves adds less than a millisecond to these times.

5.1. Performance

We compare the splatting and shading performance of our method,
with and without optimizations, to our own implementation of the
tiled photon splatting presented by Mara et al. [MML13]. We have
not implemented the stochastic selection of photons proposed by
Mara et al., and therefore, we do not preload the shared memory with
photons but interleave the loading of photons with the arithmetic
operations of computing their contribution. This also simplifies
the case when list sizes do not fit in shared memory. For the tiled
algorithm we use a tile size of 32×32.

Figure 6 presents a comparison of each method’s execution time
(photon tracing and G-buffer generation is not included, as the time
is similar for all methods) for a fly-through of each scene. The
cluster-trivial method is on average about two times faster than the
tiled method, and up to three at some peaks. The tiled method has
a lower overhead compared to our methods, and will therefore be
faster when few photons are being splatted (see Figure 6a, around
frame 150). With the directional algorithm, we achieve another 2-3x
speedup and the difference in image quality is minimal (see Fig-
ure 10, and Table 2). The directional algorithm also shows little
variance in execution times, due to better load balancing. The di-
rectional algorithm stores radiance data starting at one level above
the leaf nodes in the cluster hierarchy. The performance difference
between the different optimizations added to our cluster version are
presented in Figure 9.

When breaking down the execution times of the different methods
into passes (see Figure 8), the tiled method is dominated by the final
shading pass. The total frame time is dominated by the photon trac-
ing, but it should be noted that the photon tracing code, which relies
on OptiX, has not been optimized, nor has the deferred rendering
pass; better performance results could therefore be expected for
these steps.

5.2. Memory Consumption

Our cluster method statically allocates memory for a dense hier-
archy, even though we only build and use a sparse hierarchy per

Cluster Directional Tiled
Tiles z-Bounds - - 0.016
Cluster Hierarchy 97 97 -
Final Bounds 256 256 -
Normal Cone 24 - -
Accum. Flux 73 582 -
Sub-Total 450 935 0.016
Jobs 2.4 2.4 -
Photons Array 60 - 28
Photon Map 0.16 0.16 0.16
Sub-Total 63 7.2 28
Total 513 942 28

Table 1: Memory-consumption (in MiB) breakdown for our cluster-
trivial version, a directional version using eight regions and a tiled
version using 32×32 tiles, all of them at a resolution of 1920×1080
and using 10k photons of radius 4 in Sponza.

frame. We use a similar hierarchy to the 1080p hierarchy of Sintorn
et al. [SKOA14] with six half-floats for each AABB and 32-bit
childmask per node. In addition, we store one 32-bit word per node
for the normal cone (theta and the normal cone angle are compacted
to 8-bit values, whereas phi requires 16 bits), and 3 floats per node
for the per-node flux, effectively doubling the memory consumption.

As explained in Section 4.3, we split the splatting pass into two
sub-passes. The first sub-pass splats the photons down to a certain
pre-defined level, from which the second sub-pass starts and con-
tinues splatting further down. This means that we need to store
additional data, the jobs mentioned in Table 1, which is an array of
pairs (a 32-bit value for the photon id, and another 32-bit value for
the cluster key); as we group the jobs per cluster to improve data
locality, two lists are needed in practice. The largest size required
for this list during our experiments was 30M elements (requiring
458 MiB for both lists) for 50M photons of radius 0.2 in Sponza,
and we simply pre-allocate a list of sufficient size. In order to reduce
its memory footprint, the different sub-passes can be run several
times on a smaller sized list.

The different methods presented here generate arrays of pho-
tons per cluster/tile. Those photons are stored in a compact format,
amounting to 16 bytes per photon. Position and flux are both stored
as three half-floats, the orientation as two 8-bit values (theta and
phi), and the radius as a 16-bit value. We pre-allocate a sufficiently
large array to hold these photons, and in our experiments it has
never exceeded 102M elements (requiring 1.5 GiB when storing the
full photon, rather than just its id) for 50M photons of radius 0.2 in
Sponza.

In the directional method, we do not need to store individual
photons per cluster, but we instead need to allocate memory for
storing the accumulated flux for each direction of each node, starting
at the level where the first splat sub-pass stops, down to the leaves.
This amounts, for eight regions per node, to 24 floats per node,
which translates to a total of 582 MiB for a 1080p resolution and
starting the accumulation from level 4.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

(a) Sponza
Top: 10k radius 4, Bottom: 200k radius 1.2

(b) Sibenik
Top: 10k radius 5, Bottom: 200k radius 1.5

(c) San Miguel
Top: 10k radius 5, Bottom: 200k radius 2

Figure 6: Comparison of cluster, directional and tiled methods splatting time for the San Miguel, Sibenik and Sponza scenes using different
radii and photons numbers. The red, blue and green curves correspond respectively to tiled, cluster-trivial and directional.

Figure 7: Sum of photons read in total during the shading pass
for tiled shading and our method compared against the number of
actually contributing photons. (case: 10k photons of radius 4 in
Sponza)

5.3. Photon Splatting Efficiency

In Figure 7, we see that the tiled splatting reads many more photons
during the shading pass than are actually contributing to the shading.
Our method results in much fewer reads due to the much better
spatial bounds. With our method, on average, less than 3% of the
photons read from the lists are rejected by testing the view sample
position against the photon influence sphere.

With the cluster-cone optimization (see Section 4.5) we discard
even more photons and obtain more relevant lists (see Figure 7) and
with the cluster-trivial optimization (see Section 4.5), we replace
some of the insertions with accumulation of flux, which decreases
the number of list reads to be even fewer than the number of photons
that are actually contributing to the radiance.

5.4. Quality Evaluation

In order to assess the quality of our algorithms resulting images, we
compute their SSIM [WBSS04] and PSNR mean score agains a path
traced reference image generated using Embree [WWB∗14]. The
results are summarised in Table 2. The cluster and tiled methods
have almost identical SSIM mean score, which is expected as they
end up shading view samples with the same list of photons: only the
way those lists are computed changes. Even though the directional
method is an approximation, its SSIM mean score remains only
slightly below the cluster score. For a visual comparison, Figure 10
presents the final image for the different methods in Sponza with
200k photons of radius 2.

By using more photons and of smaller radius, our experiments
show that the final image quality improves, as regular photon map-
ping would. This is supported by the SSIM and PSNR scores listed
in 2, at least for the cluster and tiled methods. Combined with
the scaling of our algorithm, performance-wise (see Figure 8), for
"higher quality" setups, we expect the cluster-trivial method to per-
form favorably on newer hardware, without any additional modifi-
cations. Figure 11 compares the final image for our cluster-trivial
optimisation in Sponza between a low-quality setting (10k photons
of radius 4) and a high-quality one (50M photons of radius 0.2).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy
Sp

on
za

Si
be

ni
k

Sa
n

M
ig

ue
l

(a) cluster-trivial (b) directional (c) tiled

Figure 8: Breakdown of total frame time into its various components, for our cluster-trivial and directional methods, as well as Mara et al. tiled,
inside the Sponza scene using the same viewpoint as in Figure 1. Miscellaneous groups buffer clearing, texture mapping and unmapping.

5.5. Reflections

Our method can be used to render non-diffuse BRDFs, but we cannot
use the cluster-trivial optimization (as the incoming direction of each
photon is important for view-dependent BRDFs). Figure 12 shows
an example of glossy reflections. Note that, while curved objects
look convincing, we do not shoot enough photons (nor small enough
photons) to capture glossy reflections from e.g. a flat floor.

6. Discussion and Limitations

We have shown that view-sample cluster hierarchies can be used to
perform fast radiance estimates in interactive settings where photons
are few enough to be traced per frame, and large enough to provide a
smooth result. Additionally, we have shown that an approximate ver-
sion of our method can produce convincing diffuse inter-reflection
images at around 10 ms per frame, bringing global illumination
closer to use in real-time applications like video games.

Like most realtime GI algorithms (including production proven
algorithms like Voxel Cone Tracing and Light Propagation Volumes),
the most obvious drawback of Photon Splatting is the existence of
light leakage. While clearly visible in all of our renderings, we have
not found these artifacts too disturbing, however, and are convinced
that photon splatting (at the low cost we obtain) is a usable solution
for global lighting phenomena. As we focus on a small number of
large photons, high frequency phenomenas, like caustics, are poorly
represented, but still supported by our method. More convincing
results might be attained by a higher number of smaller photons.
Similarly, glossy surfaces are supported by our method, but results
remain poor, even with a higher number of small photons, as it does
for traditional photon mapping.

We have illustrated efficient splatting in the context of photon
splatting, but the same method could be applied to VPL based
algorithms, and we are eager to explore if there may be other uses
(e.g. ambient occlusion).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

Scene Photons Nb Radius
Cluster Directional Tiled

SSIM PSNR SSIM PSNR SSIM PSNR

Sponza

10k 4.0 90 25 91 27 90 24
50k 2.0 91 26 90 25 92 27

200k 1.2 93 30 92 27 93 30
1M 0.7 94 32 92 27 94 32
5M 0.5 94 32 92 27 94 32

50M 0.2 95 33 89 25 95 33

San Miguel

10k 5.0 75 22 81 25 76 22
50k 3.0 82 26 83 26 81 25

200k 2.0 84 26 83 26 83 26
1M 1.0 85 27 82 26 84 27
5M 0.5 85 28 82 26 85 27

50M 0.2 86 28 83 27 85 28

Sibenik

10k 5.0 91 28 87 27 92 27
50k 2.0 88 31 85 28 89 31

200k 1.5 94 32 89 28 93 32
1M 1.0 95 34 90 28 94 34
5M 0.6 96 36 94 30 95 36

50M 0.2 96 38 93 30 96 38

Table 2: SSIM (in %) and PSNR (in dB) results for various setups across the three test scenes using the cluster-trivial and the directional
methods against a path traced reference image generated using Embree.

Figure 9: Total execution time for our method with and without
optimizations. Included timings are splatting, shading and other es-
sential steps, e.g., building the cluster hierarchy. Tracing of photons
and deferred shading are not included. (case: 200k photons of radius
1.2 in Sponza)

Acknowledgements We would like to thank Jacob Munkberg
and Jon Hasselgren for their critical and helpful comments about
the paper. We use Mehdi Rabah’s SSIM implementation [Rab].
The Sponza scene is created by Frank Meinl, Sibenik is by Marko
Dabrovic, and San Miguel is by Guillermo M. Leal Llaguno. All
scenes are freely available at Morgan McGuire’s Computer Graphics
Archive [McG]. Pierre and Michael thank the Swedish Research
Council under grant 2014-5191 and ELLIIT for funding. Erik, Viktor

and Ulf are supported in part by the Swedish Research Council under
grant 2014-4559.

References

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S., EISEMANN
E.: Interactive indirect illumination using voxel cone tracing: A preview.
In Symposium on Interactive 3D Graphics and Games (New York, NY,
USA, 2011), I3D ’11, ACM, pp. 207–207. 2

[DBBS06] DUTRE P., BALA K., BEKAERT P., SHIRLEY P.: Advanced
Global Illumination. AK Peters Ltd, 2006. 1

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective shadow maps.
In Proceedings of the 2005 Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2005), I3D ’05, ACM, pp. 203–231. 2

[HJB∗12] HACHISUKA T., JAROSZ W., BOUCHARD G., CHRISTENSEN
P., FRISVAD J. R., JAKOB W., JENSEN H. W., KASCHALK M., KNAUS
C., SELLE A., SPENCER B.: State of the art in photon density estima-
tion. In ACM SIGGRAPH 2012 Courses (New York, NY, USA, 2012),
SIGGRAPH ’12, ACM, pp. 6:1–6:469. 2

[Jen96] JENSEN H. W.: Global illumination using photon maps. In
Proceedings of the Eurographics Workshop on Rendering Techniques ’96
(London, UK, UK, 1996), Springer-Verlag, pp. 21–30. 2

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon Mapping.
A. K. Peters, Ltd., Natick, MA, USA, 2001. 1

[KD10] KAPLANYAN A., DACHSBACHER C.: Cascaded light propagation
volumes for real-time indirect illumination. In Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2010), I3D ’10, ACM, pp. 99–107. 2

[Kel97] KELLER A.: Instant radiosity. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1997), SIGGRAPH ’97, ACM Press/Addison-Wesley
Publishing Co., pp. 49–56. 2

[LP03] LAVIGNOTTE F., PAULIN M.: Scalable photon splatting for global
illumination. In Proceedings of the 1st International Conference on
Computer Graphics and Interactive Techniques in Australasia and South

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

(a) cluster-trivial

(b) directional

(c) tiled

Figure 10: View from Sponza rendered using our cluster-trivial
method, our directional method, and Mara et al. tiled method with
200k photons of radius 1.2.

East Asia (New York, NY, USA, 2003), GRAPHITE ’03, ACM, pp. 203–
ff. 3

[LSP∗12] LI S., SIMONS L., PAKARAVOOR J. B., ABBASINEJAD F.,
OWENS J. D., AMENTA N.: kann on the gpu with shifted sorting. In
Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference
on High-Performance Graphics (Aire-la-Ville, Switzerland, Switzerland,
2012), EGGH-HPG’12, Eurographics Association, pp. 39–47. 2

[McG] MCGUIRE M.: Computer graphics archive. http://
graphics.cs.williams.edu/data Accessed on 2016/03/29. 9

[ML09] MCGUIRE M., LUEBKE D.: Hardware-accelerated global illumi-
nation by image space photon mapping. In Proceedings of the 2009 ACM
SIGGRAPH/EuroGraphics conference on High Performance Graphics
(New York, NY, USA, August 2009), ACM. 2, 3, 4

[MM13] MARA M., MCGUIRE M.: 2d polyhedral bounds of a clipped,
perspective-projected 3d sphere. Journal of Computer Graphics Tech-
niques (JCGT) 2, 2 (August 2013), 70–83. 3

[MML13] MARA M., MCGUIRE M., LUEBKE D.: Toward Practical Real-
Time Photon Mapping: Efficient GPU Density Estimation. In Interactive
3D Graphics and Games 2013 (March 2013). 2, 3, 4, 6

(a) 10k photons of radius 4 in 10 ms

(b) 50M photons of radius 0.2 in 290 ms

Figure 11: Comparison between a "low-quality" setting and a "high-
quality" setting in Sponza; the time are those from cluster-trivial.

Figure 12: Glossy materials of varying roughness rendered with our
method. 50k photons with radius 1. Total time per frame: 34 ms.

[MMNL14] MARA M., MCGUIRE M., NOWROUZEZAHRAI D., LUE-
BKE D.: Fast Global Illumination Approximations on Deep G-Buffers.
Tech. Rep. NVR-2014-001, NVIDIA Corporation, June 2014. 2

[NBGS08] NICKOLLS J., BUCK I., GARLAND M., SKADRON K.: Scal-
able parallel programming with cuda. Queue 6, 2 (Mar. 2008), 40–53.
6

[NW09] NICHOLS G., WYMAN C.: Multiresolution splatting for indirect
illumination. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games (New York, NY, USA, 2009), I3D ’09, ACM, pp. 83–
90. 2

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clustered de-
ferred and forward shading. In HPG ’12: Proceedings of the Conference
on High Performance Graphics 2012 (2012). 2

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MORLEY
K., ROBISON A., STICH M.: Optix: A general purpose ray tracing engine.
ACM Transactions on Graphics (August 2010). 3, 6

[PH10] PHARR M., HUMPHREYS G.: Physically Based Rendering, Sec-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://graphics.cs.williams.edu/data
http://graphics.cs.williams.edu/data


P. Moreau, E. Sintorn, V. Kämpe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

ond Edition: From Theory To Implementation, 2nd ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2010. 1

[Rab] RABAH M.: C++ implementation of SSIM. http://mehdi.
rabah.free.fr/SSIM/ Accessed on 2016/03/29. 9

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T., KAUTZ J.:
The state of the art in interactive global illumination. Comput. Graph.
Forum 31, 1 (Feb. 2012), 160–188. 2

[REH∗11] RITSCHEL T., EISEMANN E., HA I., KIM J. D., SEIDEL
H.-P.: Making imperfect shadow maps view-adaptive: High-quality
global illumination in large dynamic scenes. Computer Graphics Forum
(presented at EGSR 2011) (2011). 2

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-P.,
DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for efficient
computation of indirect illumination. ACM Trans. Graph. 27, 5 (Dec.
2008), 129:1–129:8. 2

[SB97] STÜRZLINGER W., BASTOS R.: Interactive rendering of globally
illuminated glossy scenes. In Proceedings of the Eurographics Workshop
on Rendering Techniques ’97 (London, UK, UK, 1997), Springer-Verlag,
pp. 93–102. 3

[SHGO11] SENGUPTA S., HARRIS M., GARLAND M., OWENS J. D.:
Efficient parallel scan algorithms for many-core gpus. In Scientific Com-
puting with Multicore and Accelerators, Kurzak J., Bader D. A., Dongarra
J., (Eds.), Chapman & Hall/CRC Computational Science. Taylor & Fran-
cis, Jan. 2011, ch. 19, pp. 413–442. 4

[SKOA14] SINTORN E., KÄMPE V., OLSSON O., ASSARSSON U.: Per-
triangle shadow volumes using a view-sample cluster hierarchy. In Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games (2014), I3D ’14, ACM. 2, 3, 4, 6

[SM88] SEDERBERG T. W., MEYERS R. J.: Loop detection in surface
patch intersections. Computer Aided Geometric Design 5, 2 (1988), 161 –
171. 5

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (April 2004), 600–612. 7

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A kernel framework for efficient cpu ray tracing. ACM
Trans. Graph. 33, 4 (July 2014), 143:1–143:8. 7

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time kd-tree
construction on graphics hardware. ACM Trans. Graph. 27, 5 (Dec. 2008),
126:1–126:11. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://mehdi.rabah.free.fr/SSIM/
http://mehdi.rabah.free.fr/SSIM/

